应兰州大学数学与统计学院张和平教授和高毓平副教授邀请,美国奥本大学镡松龄助理教授将于2023年12月12日-12月24日访问兰州大学,期间于12月14日举办学术报告。
报告题目:Graph Edge Coloring and the Overfull Conjecture
报告时间:2023年12月14日下午4:00
报告地点:城关校区理工楼631
报告摘要:Let $G$ be a simple graph. An edge coloring of $G$ is an assignment of colors to the edges of $G$ so that any two adjacent edges receive distinct colors. The smallest number of colors needed in such an assignment is the chromatic index of $G$. Clearly, we need at least $\Delta(G)$, the maximum degree of $G$, this many colors. On the other hand, Vizing in 1965 proved that at most $\Delta(G)+1$ colors are sufficient. According to their chromatic index, we naturally classify all simple graphs into class 1 (those with chromatic index equal to their maximum degree) or class 2, but the classification problem is NP-complete. However, when a graph has ``too many’’edges, the graph is trivially class 2. Conversely, Chetwynd and Hilton in 1985 made the Overfull Conjecture: if a graph $G$ satisfies $\Delta(G)>|V(G)|/3$, then $G$ is class 2 also implies that $G$ or some subgraph of $G$ has too many edges. In this talk, we look at some recent progress toward the conjecture.
欢迎广大师生参加!
报告人简介
镡松龄,美国奥本大学助理教授,主要研究方向为结构图论、图染色与极值图论。于2015年从美国佐治亚州立大学获得博士学位,2015-2018年在美国范德堡大学从事博士后研究工作。截止目前,在J. Combinatorial Theory Ser. B,J. Graph Theory等图论与组合方向的顶级期刊发表高水平学术论文四十几篇,解决了图论领域的几个公开问题和猜想。
甘肃省高校应用数学与复杂系统省级重点实验室
数学与统计学院
萃英学院
2023年12月11日