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Vertex-based auxiliary space multigrid method and its application to linear
elasticity equations
PHE BIER

In this talk, a vertex-based auxiliary space multigrid (V-ASMG) method as a
preconditioner of the PCG method is proposed for solving the large sparse linear
equations derived from the linear elasticity equations. The main key of such V-
ASMG method lies in an auxiliary region-tree structure based on the
geometrically regular subdivision. The computational complexity of building
such a region-tree is O (qN log2 N ), where N is the number of the given original
grid vertices and g is the power of the ratio of the maximum distance d_max to
minimum distance d_min between the given original grid vertices. The process of
constructing the auxiliary region-tree is similar to the method in [L. Grasedyck,
L. Wang, J.C. Xu, Numerische Mathematik, 2016], but the selection of the
representative points is changed. To be more specific, instead of choosing the
barycenters, the correspondence between each grid layer is constructed based on
the position relationship of the grid vertices. There are two advantages for this
approach: the first is its simplicity, there is no need to deal with hanging points
when building the auxiliary region-tree, and it is possible to construct the
restriction/prolongation operator directly by using the bilinear interpolation
function, and it is easy to be generalized to other problems as well, due to all the
information we need is only the grid vertices; the second is its strong convergence,
the corresponding relative residual can quickly converge to the given tolerance(lt
is taken to be 10"—6 in this paper), thus obtaining the desired numerical solution.
Two- and three-dimensional numerical experiments are given to verify the strong
convergence of the proposed V-ASMG method as a preconditioner of the PCG

method.
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Structure-preserving stabilized exponential time differencing schemes for
Allen-Cahn type equations with application to cancer cell growth model
with a generalized tumor cell mobility

PR Bl Bd%

Allen-Cahn equation is widely used in simulating the multi-phase fluid
problems. As a special case of the semilinear parabolic equation, Allen-Cahn
equation inherits the maximum bound principle, which states that the solution of
the time-dependent equation is always piecewisely bounded by a specific constant.
Maximum bound principle is also important for the variants of Allen-Cahn type
equations such as conservative Allen-Cahn equation, convective Allen-Cahn
equation, vector-valued Allen-Cahn equation and dynamic boundary Allen-Cahn
equation. In this talk, we will consider the structure-preserving stabilized
exponential time differencing schemes for Allen-Cahn type equations with
application to the cancer cell growth model with a generalized tumor cell mobility.
Cancer cell growth model is widely used to investigate tumor invasion, metastasis,
and treatment resistance. In this study, we present an accurate and efficient
numerical method for a cancer cell growth model coupled with a generalized
tumor cell mobility. The model consists of two reaction—diffusion equations and
one ordinary differential equation. We develop two efficient exponential time
differencing schemes with stabilized term to solve this model. The proposed
schemes are linear decoupled numerical algorithms, designed to preserve the
unconditional maximum bound principle and non-negativity of the tumor cell
concentrations, extracellular matrix and matrix metalloproteinases. Rigorous
convergence analysis in the $LMinfty$ norm is also established. Extensive
numerical experiments in two and three dimensions are performed to validate the
theoretical findings and predict tumor growth dynamics. This work is joint with

Feng Xinlong, Hou Yabin and Qiao Yuanyang (XJU).
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Global stability of large solutions to the three-dimensional full
compressible Navier-Stokes equations with vacuum
CRERAIEZEr

This talk is concerned with large-time behavior of global solutions to the
Cauchy problem of three-dimensional (3D) full compressible Navier-Stokes
equations with large data and initial vacuum. It is shown that if the Serrin's type
criterion is satisfied, i.e., the quantity $\\rho\|_{L"{\infty} (O\infty;L"{\infty})}
+ \JU\_{L™{(2r)/(r-3)}(0\infty; L”~r)}$ is bounded for any $3<r\leq\infty $, then
the problem has a global unique strong solution $(\rho,u\theta)$ on
$\mathbb{R}"3\times(0,\infty)$. The exponential decay estimates for the lower-
higher order norms of both velocity and temperature are also derived. It is worth
pointing out that the $L"2-L"g$-norms of the gradient of density with
$3<g<6$ are uniformly bounded for all $t \geq 0%, which is in sharp contrast to
that in [J. Li, J. Li, B. Lv, Global classical solutions to the full compressible
Navier-Stokes equations in 3D exterior domains. arXiv: 2208.11925v1] and [J. Li,
B. Lv, X. Wang, Global existence of classical solutions to full compressible
Navier-Stokes equations with large oscillations and vacuum in 3D bounded
domains. arXiv: 2207.00441v1] for the initial-boundary value problem with the
Navier's slip boundary condition for velocity and the thermal-insulated boundary

condition for temperature.
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A Deep Learning Approach for Solving the Inverse Problem of the Wave
Equation
e B Hid%

Full-waveform inversion (FWI) is a powerful geophysical imaging technique
that infers high-resolution subsurface physical parameters by solving a non-
convex optimization problem. However, due to limitations in observation, e.g.,
limited shots or receivers, and random noise, conventional inversion methods are
confronted with numerous challenges, such as the local-minimum problem. In
recent years, a substantial body of work has demonstrated that the integration of
deep neural networks and partial differential equations for solving full-waveform
inversion problems has shown promising performance. In this work, drawing
inspiration from the expressive capacity of neural networks, we provide a new
deep learning approach aimed at accurately reconstructing subsurface physical
velocity parameters. This method is founded on a re-parametrization technique
for Bayesian inference, achieved through a deep neural network with random
weights. Notably, our proposed approach does not hinge upon the requirement of
the labeled training dataset, rendering it exceedingly versatile and adaptable to
diverse subsurface models. Furthermore, uncertainty analysis is effectively
addressed through approximate Bayesian inference. Extensive experiments show
that the proposed approach performs noticeably better than existing conventional

inversion methods.
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Bayesian Approach to Determining the Orientation and Position of Sound-
soft Obstacles with Partial Phaseless Data via Quadratic Wasserstein
Metric
WSS B
In this talk, we consider to reconstruct the orientation and position of an
acoustically sound-soft obstacle from few phaseless far-field observation
directions with respect to one single incident wave in two dimensions. The
Bayesian approach is adopted to deal with the small number of observation data
and to design robust inversion algorithms against different initial guesses and
wavenumbers. The quadratic Wasserstein metric is utilized to measure the
distance between two observation data to improve the Bayesian approach. The
first-order convergence rate for computing the quadratic Wasserstein metric and
the well-posedness of the posterior distribution are verified. The advantages of
using the Wasserstein metric over the L2-norm and the effectiveness of the

proposed method are illustrated.
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