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1. VPR (FEBZREBES RGREV D)

A H: Heterogeneous Multiscale Methods: higher order methods and
higher-order systems

FE: We shall discuss a high order numerical method for the multiscale PDEs,
which is based on an online-offline strategy. Arbitrary high accuracy may be
achieved for deriving the macroscopic informations. We shall also discuss the
heterogeneous multiscale method for the strain gradient elasticity model for
heterogeneous media, which is a typical representative for the higher order
elliptic system. This is a joint work with Si Qi Song (AMSS) and Yulei Liao
(National University of Singapore).

figr: WP, hERE RS RGER AT R T R, HATEAE (5
(ETHE S THEAUN D) 98 LSRR A TH R &R R &
TN A R B SR AL s 22 > J5 T T 78, £ Cauchy-Born
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2014 FFIRGEFARHFFRES . 2019 FANGEHEPUALE FK T Nt EF 4
FH A ENA TR, 2023 SF3R5E -+ Fm SRR AR 2L, 2024 4224
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2. FrhdE (RBET RS

i H : Unveiling the Physics of Pancake Bouncing: Mathematical Framework for
Droplet Impact on Microcone Arrays

# E : Understanding and predicting the pancake bouncing phenomenon of
droplets on superhydrophobic micro-structured surfaces, as observed by Liu, Y.
et al. (Nat. Phys. 10, 515 - 519, 2014), remains a significant challenge due to the
complex fluid - substrate interactions. Here, we present the first rigorous
mathematical model that successfully explains and quantitatively reproduces this
phenomenon. Our novel nonlocal framework rigorously connects microscopic
intermolecular interactions to macroscopic surface tension without empirical
parameters and introduces a nonlocal contact repulsion to robustly treat the
complex geometry of microcone arrays, ensuring simulation stability at high
Weber numbers. Implemented within the smoothed particle hydrodynamics
(SPH) method, our approach allows for high-fidelity 3D simulations that
replicate the key features of pancake bouncing observed experimentally.
Benchmarking with empirical data confirms that our model captures the full
dynamics and underlying mechanisms of pancake bouncing, providing a
powerful predictive tool for designing micro-structured surfaces for advanced
fluid manipulation.

fEj s Irhte, 2006 FEIRFEHNR R Lm0, BUEFHE R LR N A
BE R BEEE . ML, AP RS RGRET b —
TR N B IR G S s s Uy @l AT R Dk 5 N FHEUE AW 55
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BAETTE DT, $2H T — RVVFEAIPERCR . W3R A HEWT 70 58 B/ 28 75 4F
FHK (2013) . FHRHFLSEFEFERL (2018) KEBHF TR
FH I (2020 o 324 EFE SIAM Review %5 [E Br 01 44 W F & R 18 SC 90 25

AT AAMM #4047 F4%, LLA JCP. NMPDE. IINAM 2% [ b 1) 40 25 .

3. KEBK (FERIMEARE)

RRHE = ARL R IR ARG I ] 2 VR S 1 A R AR 5 %

# Z : A novel hybrid augmented FVM approach is proposed for solving
nonlinear degenerate elliptic equations. The method provides a more general
framework for general nonlinear degenerate problems. Since the augmented
variables related with singularities are the bridge between the singular
subdomain and regular subdomain, the singular problem can be solved by the
schemes with uniform grids. A rigorous error estimates is obtained by the
Induction hypothesis. The validity and effectiveness of the proposed method are
demonstrated by some physically motivated nonlinear degenerate examples.
e TRERK, MR R e B R, Al 2001 4EEE
W F I AR K2R 2 5 KGR A 2B R L, AR o 1EHER SR 2
[ A07 . 2002 4 22 2004 4 8 £ 1 [ R B RS ERRE 7 I AAS RSB £
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BEH: AR ARE—M QR R R R IR R
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5. B (FEBEERKE)

& H : Finite Volume Analysis of the Poisson Problem via a Reduced
Discontinuous Galerkin Space

P EE: In this talk, we propose and analyze a high-order finite volume method for
the Poisson problem based on the reduced discontinuous Galerkin (RDG) space.
The main 1dea is to employ the RDG space as the trial space and the piecewise
constant space as the test space, thereby formulating the scheme in a
Petrov-Galerkin framework. This approach inherits the local conservation
property of finite volume methods while benefiting from the approximation
capabilities of discontinuous Galerkin spaces with significantly fewer degrees of
freedom. We establish a rigorous error analysis of the proposed scheme: in
particular, we prove optimal-order convergence in the DG energy norm and
suboptimal-order convergence in L2 norm. The theoretical analysis is supported
by a set of one- and two-dimensional numerical experiments with Dirichlet and
periodic boundary conditions, which confirm both the accuracy and efficiency
of the method. The significance of this work lies in bridging finite volume and
discontinuous Galerkin methodologies through the RDG space, thus enabling
finite volume schemes with a mathematically rigorous convergence theory.
. ZE, PEREARARR SRS A, R, AR, %
WA MENA RIS HEZ . P EBEE R R A RR G 220, S )E
P EAT IR AR TR G K55 NS L 5 W Fe Ay e TAE
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SR NN ) R E WA RTINS/ i S R o o AL )TV VA S R /K % NN
PRYDEE . A A0 A LSS J T B AR, . AH ¢ AR &R AE AU FE Math.
Comp., J. Comput. Phys., J. Sci. Comput., SIAM J. Num. Anal., STAM J. Sci.
Comput.F5t . FFRFEFK ARBIEE . BE . ZRE AR HEIHEZ 0
Rl 3k a1 H BT,

6. Fikh (U)IIKE)

A H: Optimization and preconditioning: TPD algorithms for nonlinear PDEs
# Z : In physics and mathematics, a large class of PDE systems can be
formulated as minimizing energy functionals subject to certain constraints.
Lagrange multipliers are widely used for solving these problems, which
however leads to minmax optimization problems, i.e., saddle point systems. The
development of fast solvers for saddle point systems, especially the nonlinear
ones, is particularly difficult in the sense that (i) one has to consider the
preconditioning in two directions and (i1) the preconditioners have to evolve in
iteration due to the nonlinearity. In this work, we introduce an efficient
transformed primal-dual (TPD) algorithm to solve the aforementioned nonlinear
saddle point problems. We prove the optimal convergence in terms of the
condition number. We apply the algorithm to a nonlinear Maxwell equation and
show that it is much more efficient than some traditional fixed point and
projected gradient descent algorithms.

fajar: Fhikht, 2014 RGN HC A=A, 2019 FR1G R E
JEWEFE TR W24, M5 56 5 T 3R B R M 37 K22 4T: Zassenhaus
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Assistant Professor, 3 BN K5 /R¥ 73 AT Visiting Assistant Professor,
M Hh UK Research Assistant Professor, AU 1| K SAAFRFIEAT 7T 57 o A
KN TR BRI IWE5E,  {E SIAM #41. JCP. CMAME,
M3AS. JSC ST FRRCHE 20 RiE, AR, M ERHREEA
RFLEIE S —T (15 J33670) M E AR REem LW HE O, JFEA
EEREERTEAA R GRIMUEHERZ0 .

7. AR (WHLKF)

A H : High order finite difference WENO methods with unequal-sized
sub-stencils for the DP type equations

# ZE . In this talk, we present finite difference weighted essentially
non-oscillatory (WENO) schemes with unequal-sized sub-stencils for solving
the Degasperis-Procesi (DP) and 1 - Degasperis-Procesi ( 1 DP) equations,
which contain nonlinear high order derivatives, and possibly peakon solutions or
shock waves. By introducing auxiliary variable(s), we rewrite the DP equation
as a hyperbolic-elliptic system, and the B DP equation as a first order system.
Then we choose a linear finite difference scheme with suitable order of accuracy
for the auxiliary variable(s), and finite difference WENO schemes with
unequal-sized sub-stencils for the primal variable. Comparing with the classical
WENO scheme which uses several small stencils of the same size to make up a
big stencil, WENO schemes with unequal-sized sub-stencils are simple in the

choice of the stencil and enjoy the freedom of arbitrary positive linear weights.

18

Another advantage is that the final reconstructed polynomial on the target cell is
a polynomial of the same degree as the polynomial over the big stencil, while
the classical finite difference WENO reconstruction can only be obtained for
specific points inside the target interval. Numerical tests are provided to
demonstrate the high order accuracy and non-oscillatory properties of the
proposed schemes.

fEifr: AT 2007 4E3RH ERHEBR R 228 12507, 2012 S5 A B
REFF AL, FIREF HBEHEZ. 2012-2016 737 75 5 BRI SR Z- A
fib K2 N FE -SSR 78 TAE. 2016-2022 AT K24 E ATHRIRF 7T 51, BT
WL AT AR R 2016 2N P40 s 2 IE 4E A A THRI,
2017 R P EB AU REB A 2R = “FHEEER” =A%, JFNE
T 2021 AL+ Jm A R c 2 R Bk S . WEFCT FONEUE b, B
T, AErEE. Pla IS0k, 27 LE AR WA BR ooy
R SRR S LML BB S AR g R R BB R S AR S TR
RIS AN B R BE AL T S8R90 B N 55 5 T

8. BRR GHEAKRF)

A H: High-precision deep learning methods for solving scattering problems in
unbounded domains

FE: In this talk, I will outline our most recent advances in addressing acoustic

scattering problems. Regarding unbounded domain scattering challenges, we

L



have developed an innovative alternating-optimized SNN approach that delivers
both computational efficiency and high precision.

. SRR, HRRZEEEER, Bd%, S, W BERAET 5 R
AU )l ) AME A S ER, M T FERUE RS Hlas s I SRS N
WA R K AE SIAM J. Numer. Anal., Math. Comput., Inverse Problems,
J.Sci. Comput. PALK IMA J. Numer. Anal. Z54%:& b . &JHEZ H IR R 243
SUWH . EHPEE. ShE AR eSS BUEPE A2 RSy
ZEHE, PEGAFPRHEREERSRZ R SHREHraH .

9. EHF CERIHEREB L)

A H: An adaptive Hermite spectral method for the Boltzmann equation

# B . We propose an adaptive Hermite spectral method for the Boltzmann
equation. This adaptive Hermite spectral method contains the scaling and
$pS$-adaptive methods, where a uniform indicator is constructed based on the
expansion coefficients, and the detailed algorithms are built, respectively.
Several numerical examples are studied to validate the efficiency of this
adaptive Hermite spectral method.

. FHEHE L, AEUERERT ORI T 5L, NIEE KGR IR
FHEANA R 2014 F 1L EL T AL RO B AR 2 B . 2014 55 2017
LR N B S T BECE I AR B BRI ST 04, 2019 4E 7 H &4 1E
AR E R OO A . 32N il 70 7 R A e A b A s 2
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10. % B JALRImiERS)

Bl B : Fully-discrete schemes based on low regularity integrators for the
penalized Allen-Cahn-Ohta-Kawasaki model

W E . Low regularity integrators (LRIs) have been widely used as a type of
temporal integration for evolution equations. For a class of semilinear parabolic
equations with maximum bound principle, the LRI schemes were established
and the fully-discrete convergence analysis for the first-order scheme was given
in the literature, while the error estimates for the second-order scheme is still
missing. In this work, we provide the error analysis of the fully-discrete LRI
schemes of first and second order in time for the penalized
Allen-Cahn-Ohta-Kawasaki model for diblock copolymers. We give the optimal
error estimates under the assumption that the exact solution is only continuous in
time, while the continuous differentiability is required in some conventional
methods. Numerical experiments are presented to verify the theoretical results
and illustrate the performance of the LRI schemes.

Ay 2, R T AR R Y, e R ALt R AT T L
FRPRINK S HERETRENFIE LR, BIR T AL sUmie Ko,
F2 BT TS AR I AR L 55 A1 5 1R R ) ey RCEUE 7 B st 5 0 e
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SEBRR Y, HAEYE ., R RN SEESEATENE. ARETRE
ANifly 7 P AL PR S i Ty AR I v B SR - B B, AT B AL I
TR T R R RN B 585 R 2 S, BB AR A L2 Bk (gPC)
JEFF, BERIET gPC IR WSIGE LRI A, B RIESE R J71%: 5 T b3
[y T i DU G K L AT AP S IHE Sy G

A i, FLEE T ERERE SR R, 2013-2021 FELEIL RN A
SRR TR SO LA, 2021 SEE A 510 KA 80E b TAE .
E BRI FE 5 19 S s R A e U S AR R R Ak, E
FEE K BARER ST EOH . WOLRARSMATERES T . HE 3
REEPR R R0 H 25, 75 JCP 253 H & % SCI 3L 30 F4

12, R GHELRS)

A H: A fully discrete finite element method with second-order temporal
accuracy for the Rosenweig model

W E. A linear, unconditionally energy-stable, and fully discrete finite element
method for an incompressible FHD flow is proposed. Consider the constitutive
equations that model the motion of a magnetic fluid, proposed by Rosensweig.
The Rosensweig model comprises the Navier-Stokes equation, the angular
momentum equations, the magnetization equation, and the magnetostatics

22

equation. An equivalent form of the magnetostatics equation is derived, which
helps us to design an unconditionally stable discrete scheme. We propose a new
fully discrete finite element method with second-order temporal accuracy, which
preserves the original energy. We linearize the discrete problem with
extrapolated solutions. The unconditional stability of the fully discrete solution
1s proved. Furthermore, we obtain the existence and uniqueness of the fully
discrete solution by the Leray-Schauder fixed point theorem. Numerical
experiments verify the effectiveness and accuracy of the scheme, and simulate
the controllability of the magnetic fluid driven by an applied magnetic field.

fE e HEWRG, WERZFHER, FENFAT] R RaRAAR ) A EUE 5
. NP EEFARAR TS “BARTFEANA TR LR | W aF
BRI E ENA TR FRFEZKE ARG W H R HE0H
A1, [ AR R R B BT E A EIE % 1 T WA
SORH 13, WEEAE T EEA 1O, A ERARRE (BE
THREITE) ANIZERE T —RIREMERL T k. £ (IMA
Journal of Numerical Analysis) . {Computer Methods in Applied Mechanics and
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14. Fijele (FREILRE)

BH: Sss s AR Klein-Gordon-Zakharov J7 F& i) —EUA Sl 7 12z
$ZE: In the high-plasma-frequency limit regime, the KGZ system will collapse
to the Zakharov equation, and the solution propagates high-frequency waves in

time, which brings significant difficulty in designing accurate and efficient
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numerical schemes. The NPI method is designed by separating the oscillatory
part from the non-oscillatory part, and integrating the former exactly. Based on
the Picard iteration, the NPI method can be applied to derive arbitrary
higher-order methods in time with optimal and uniform accuracy , and the
corresponding error estimates are rigorously established. In addition, the
practical implementation of the second-order NPI method via Fourier
pseupospectral discretization is clearly demonstrated, with extensions to the
third-order NPI. Some numerical examples are provided to support our
theoretical results and show the accuracy and efficiency of the proposed
schemes.
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15. F& Wl (PO)IRED

A H: Optimal L2 Error Estimates for Non-Symmetric Nitsche’s Methods
#E . Nitsche’s method is widely used to weakly impose Dirichlet boundary
conditions in finite element discretizations. While the symmetric formulation is

well understood, the non-symmetric counterpart is often preferred because it

S



avoids large penalty parameters and, in many settings, works naturally without
additional stabilization; nevertheless, its L>-error theory remains unsatisfactory.
Existing analyses predict a suboptimal half-order loss in the L? norm, in contrast
with the optimal convergence that is consistently observed in numerical
experiments. In this talk, we close this theoretical gap. We show that the
suboptimal estimates arise from a lack of adjoint consistency in the standard
duality argument. By constructing a new dual problem tailored to the
nonsymmetric formulation, together with refined regularity results for associated
Robin boundary value problems, we recover full optimal L? convergence. Our

analysis covers both the stabilized and the penalty-free variants of the method,

and applies on general shape-regular meshes without assuming quasi-uniformity.

Three-dimensional numerical experiments validate the sharpness of the derived
estimates.
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16. R¥%H ALK

A& H : Analysis of Local Discontinuous Galerkin Method for the Integral
Fractional Laplacian

# E . This talk presents a local discontinuous Galerkin (LDG) method fo
solving integral fractional Laplacian problems. Our approach is based on a novel
three-field mixed formulation derived from the Riesz potential. We establish a
rigorous analysis of the weighted Sobolev regularity for the resulting system on
arbitrary bounded Lipschitz domains. This theoretical framework allows us to
prove quasi-optimal error estimates for both uniform and graded meshes.
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18. FIFEIE  (FEILTALRE

A H : Efficient numerical methods for melting of the aluminum-based
superalloy under electromagnetic levitation

FE: In this work, we provide a decoupled efficient numerical algorithm to
characterize the phase transition, the oscillatory deformations and steady fluid
flow of aluminum-based superalloy under the electromagnetic levitation. We
solve the electromagnetic equation based on the magnetic vector potential A; A
fully linearized scheme is employed to the heat equation; For the fluid part, a
decoupled scheme is pulled in for the velocity and pressure, and the time filter
technique to improve the temporal convergence order are utilized. The related

algorithm is followed with unconditional stability property. Finite element
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method is dragged into spatial discretization. Numerical experiments are
provided to validate the temporal convergence behaviors, as well as the robust
of the proposed algorithm.
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19. ERI (FPEEFERE)

& H : Foliation structures and global flow dynamics of scalar hyperbolic
conservation laws on manifolds: 1. geometry-compatible fluxes and numerical
validation on sphere and torus

W ZE: This talk presents a theoretical and computational framework for scalar
hyperbolic conservation laws (sSHCL) defined on regular, closed 2D manifolds.
A key contribution is a geometry-compatible (GC) flux formulation that utilizes
prescribed flux directional vectors, ensuring consistency between surface
divergence and manifold geometry, in which no artificial geometry-induced
source/sink exists. This approach creates a natural foliation, where the manifold
is decomposed into leaves (a set of submanifolds) along which the 2D sHCL on
the manifold can be reduced to a series of 1D hyperbolic conservation law

problems on curves parametrized by arc length. The global flow dynamics on

e



the 2D manifold then emerge from the collective evolution of these 1D leaf-wise
solutions and are qualitatively validated via the 2D-1D reduction tests on a
sphere. To support the theoretical analysis, numerical simulations are performed
using a cp-WENO scheme, which combines the Closest Point Method (CPM)
embedding with high-order WENO discretization in the computational tube
extended beyond the manifold. Experiments conducted with the inviscid
Burgers' equation demonstrate this framework on both the sphere and torus.
Geometry-induced structures such as regular leaves, singular points, and
separatrices appear. On the sphere, shocks and rarefaction waves evolve along
circular regular leaves, with the longest leaf acting as an asymptotic separatrix
that divides large-scale rotational patterns. On the torus, the foliation is critically
dependent on the flux-directional vectors: in the degenerate case, singular
circular leaves serve as invariant barriers separating clockwise and
counterclockwise flows; isolated singular points anchor rotational structures and
organize nonlinear wave interactions.
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20. \EHE  (FEEFERY

i H : Regularized Lagrange Multiplier Methods with Energy Dissipation for the
Incompressible Flows

# ZE : For incompressible Navier-Stokes (NS) equation, we propose the
dynamically regularized Lagrange multiplier methods (DRLM). Via the
Lagrange multiplier, we incorporate the energy evolution process into the
original system. The corresponding first- and second-order DRLMs are
unconditionally energy stable when the nonlinear terms are treated explicitly. In
addition, we introduce a dynamically regularized term, i.e., the stabilized
first-order time derivative on the square of the Lagrange multiplier, so that the
resulting numerical schemes allow for a larger time step. Lastly, we provide the
error estimates on the first-order DRLM schemes for the coupled and decoupled
systems.
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21. 5 & O AEERS)

A H : The modelling and high order numerical method for fractional convection
equation

W E: This talk focuses on the development of fractional convection equation
including the modelling process and the construction of high order finite
difference method. Through using a continuous time random walk (CTRW) with
power-law jump length distributions, we formulate the fractional convection
equations depicted by Riesz derivatives with order in (0, 1). Then, we propose a
4th order compact difference method for fractional convection equations
through introducing a new generating function. A thorough analysis about the
stability and convergence is conducted which shows the proposed scheme is
unconditionally stable and convergent with order O( T2 +h*) . Numerical
experiments are carried out to verify the effectiveness of the derived scheme.
i Zifd, VIV RN, A AR S, 32 BRI A B O T R
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