登录 管理系统 ENGLISH兰大主页
欢迎来到兰州大学数学与统计学院!

Yuan-Xiang Zhang



Personal Information
Lecturer

School of Mathematics and Statistics

Lanzhou University
Email: zhangyuanxiang@lzu.edu.cn

Education

4. 10/2011-10/2012, Joint training PhD student, Mathematics Institute, University Of Warwick, United Kingdom. Advisor: Prof. Andrew M. Stuart.
3. 09/2009-12/2012, PhD., School of Mathematics and Statistics, Lanzhou University. Advisor, Prof. Chu-Li Fu.
2. 09/2006-06/2009, M.S., School of Mathematics and Statistics, Lanzhou University. Advisor, Prof. Chu-Li Fu.
1. 09/2002-09/2006, B.S., School of Mathematics and Statistics, Lanzhou University.
Academic History
1. 12/2012-Now, Lecturer, School of Mathematics and Statistics, Lanzhou University.
Research Interests
Inverse problems for PDE.
Research Funding
3. National Natural Science Foundation of China, No. 11501270, 01/2016-12/2018.
2. Fundamental Research Funds for the Central Universities, No. lzujbky-2014-19, 01/2014-06/2015.
1. Fundamental Research Funds for the Central Universities, No.lzujbky-2013-k02, 01/2013-12/2015.
Publications

[15] Liang Yan, Yuan-Xiang Zhang. Kullback-Leibler approximation for Bayesian inverse problems based on surrogate models (Submitted).

[14] Yuan-Xiang Zhang, Liang Yan. The general a-posteriori truncation method and its application to radiogenic source identification for the Helium production-diffusion equation, Appl. Math. Model. 43 (2017), 126–138.

[13] Chu-Li Fu, Yun-Jie Ma, Yuan-Xiang Zhang, Fan Yang. A simple a-posteriori regularization method for solving the Cauchy problem for the Helmholtz equation with non-homogeneous Neumann data. Appl. Math. Model. 39 (2015), no. 14, 4103–4120.
[12] Sergios Agapiou, Andrew M. Stuart, Yuan-Xiang Zhang. Bayesian posterior contraction rates for linear severely ill-posed inverse problems. J. Inverse Ill-Posed Probl. 22 (2014), no. 3, 297–321.
[11] Yuan-Xiang Zhang, Chu-Li Fu, Yun-Jie Ma. An a-posteriori parameter choice rule for truncation regularization for solving backward parabolic problems. J. Comput. Appl. Math. 255 (2014), 150–160.
[10] Hao Cheng, Chu-Li Fu, Yuan-Xiang Zhang. An iteration method for stable analytic continuation. Appl. Math. Comput. 233 (2014), 203–213.
[9] Yuan-Xiang Zhang, Chu-Li Fu, Zhi-Liang Deng. An a-posteriori truncation method for some Cauchy problems associated with Helmholtz-type equation. Inverse Probl. Sci. Eng. 21 (2013), no. 7, 1151–1168.
[8] Chu-Li Fu, Yun-Jie Ma, Hao Cheng, Yuan-Xiang Zhang. The a posteriori Fourier method for solving the Cauchy problem for the Laplace equation with nonhomogeneous Neumann data, Applied Mathematical Modelling. Appl. Math. Model. 37 (2013), no. 14-15, 7764–7777.
[7] Chu-Li Fu, Yuan-Xiang Zhang, Hao Cheng, Yun-Jie Ma. The a-posteriori Fourier method for solving ill-posed problems.  Inverse Problems 28 (2012), no. 9, 095002, 26 pp.
[6] Chu-Li Fu, Yuan-Xiang Zhang, Hao Cheng, Yun-Jie Ma. Numerical analytic continuation on bounded domains.  Eng. Anal. Bound. Elem. 36 (2012), no. 4, 493–504.
[5] Yun-Jie Ma, Chu-Li Fu, Yuan-Xiang Zhang. Identification of un unknown source depending on both time and space variables by a variational method.  Appl. Math. Model. 36 (2012), no. 10, 5080–5090.
[4] Yun-Jie Ma, Chu-Li Fu, Yuan-Xiang Zhang. Solving a backward heat conduction problem by variational method.  Appl. Math. Comput. 219 (2012), no. 2, 624–634.
[3] Yuan-Xiang Zhang, Chu-Li Fu, Liang Yan. Approximate inverse method for stable analytic continuation in a strip domain. J. Comput. Appl. Math. 235 (2011), no. 9, 2979–2992.
[2] Zhi-Liang Deng, Chu-Li Fu, Xiao-Li Feng, Yuan-Xiang Zhang. A mollification regularization method for stable analytic continuation.  Math. Comput. Simulation 81 (2011), no. 8, 1593–1608.
[1] Yuan-Xiang Zhang, Chu-Li Fu, Zhi-Liang Deng. A conditional stability result for backward heat equation. (Chinese) J. Lanzhou Univ. Nat. Sci. 44 (2008), no. 2, 100–102.